All posts by Postępy Mikrobiologii

Badania speleomikologiczne w wybranych obiektach podziemnego kompleksu Riese (Góry Sowie, Dolny Śląsk, Polska)

Speleomycological research in the selected objects of underground Riese complex (Sowie Mountains, Lower Silesia, Poland)
R. Ogórek, A. Lejman

1. Wstęp. 2. Charakterystyka kompleksu Riese. 3. Metody używane do oceny jakości mikrobiologicznej powietrza. 4. Czynniki środowiskowe wpływające na liczebność grzybów w obiektach podziemnych. 5. Grzyby występujące w powietrzu wybranych obiektów kompleksu Riese. 6. Potencjalny szkodliwy wpływ grzybów wyizolowanych z powietrza wybranych obiektów kompleksu Riese na zdrowie ludzi. 7. Podsumowanie

Abstract: The term „speleomycology” was first introduced by Polish scientists in 2014 and it is now used to describe all kinds of investigations which aim at the recognition of cave and underground mycobiota. Microbiological quality of air is estimated by using microscopic or culture methods. In the underground objects, the culture method with a microbiological air sampler (collision technique) is commonly used. Most fungi can be found underground as spores, which entered the objects transported by air or water currents, by animals living in the caves (e.g. bats, arthropods) or by humans visiting the objects. However, the environment surrounding the underground objects and the air currents seem to have the most significant influence on fungi concentrations inside the objects. Riese complex was built between 1943–1945 in the Sowie Mts. (Lower Silesia, SW Poland), but its purpose still remains unclear. Fungi isolated from the air of the studied objects (i.e. Osówka, Rzeczka, Włodarz) can cause allergies and infections in humans. However, fungal spore concentration and number of species in Riese complex do not exceed norms of microbiological quality of air and, thus, do not present a health risk to the tourists.

1. Introduction. 2. Characteristics of the Riese complex. 3. Methods used for assessing the microbiological quality of air. 4. Environmental factors affecting the number of fungi in underground objects. 5. Airborne fungi occurring in the selected objects of underground Riese complex. 6. The potential harmful effect of airborne fungi isolated from the selected objects of Riese complex on human health. 7. Summary

Cytolizyny – czynniki zjadliwości Staphylococcus intermedius i Staphylococcus pseudintermedius

Cytolysins – virulence factors of Staphylococcus intermedius and Staphylococcus pseudintermedius
W. Kmieciak, E. M. Szewczyk

1. Wprowadzenie. 2. Taksonomia. 3. Chorobotwórczość S. intermedius i S. pseudintermedius. 4. Cytolizyny gronkowców. 4.1. Hemolizyna α. 4.2. Hemolizyna β. 4.3. Hemolizyna δ. 4.4. Hemoliza synergistyczna. 4.5. Hemolizyna γ. 4.6. Leukocydyny. 5. Podsumowanie

Abstract: Bacteria in the Staphylococcus genus are one of the most abundant in the human microbiome. In addition to S. aureus, coagulase-positive group includes other species, such as isolated from animals S. intermedius and S. pseudintermedius. Recently, these two species have been also isolated from clinical materials from humans with increasing frequency. Apart from wound infections caused by animal bites, S. intermedius and S. pseudintermedius are also an etiological agent of endocarditis, central nervous system infections or bacteremia. Both species produce cytolysins: hemolysins α, β, δ, γ and leukocidins which have the ability to damage not only erythrocytes, but also many eukaryotic cells. Thus, these toxins seem to be very important virulence factors. In the light of the recent studies indicating participation of cytolysins in inflammatory processes and formation of biofilms, toxins produced by these species seem to be of particular importance in the pathogenesis of infections.

1. Introduction. 2. Taxonomy. 3. Pathogenicity of S. intermedius and S. pseudintermedius. 4. Staphylococcal cytolysins. 4.1. Hemolysin α. 4.2. Hemolysin β. 4.3. Hemolysin δ. 4.4. Synergistic hemolysis. 4.5. Hemolysin γ. 4.6. Leukocodins. 5. Summary

Drożdże jako potencjalne źródło tłuszczu mikrobiologicznego

Yeast as a potential source of microbial fat
A. M. Kot, S. Błażejak, A. Kurcz, I. Gientka

1. Wstęp. 2. Mikroorganizmy olejogenne. 3. Enzymatyczne drogi syntezy tłuszczu w komórkach drożdży. 3.1. Biosynteza tłuszczu de novo. 3.2. Biosynteza tłuszczu ex novo. 4. Czynniki wpływające na proces biosyntezy tłuszczu. 5. Próby doskonalenia genetycznego drożdży olejogennych. 6. Ekstrakcja tłuszczu z komórek drożdży. 7. Możliwości przemysłowego zastosowania tłuszczu mikrobiologicznego. 8. Podsumowanie

Abstract: The yeast which can produce more than 20% lipids in their dry matter are called oleaginous and belong mainly to the genera Yarrowia, Rhodotorula, Rhodosporidium, Cryptococcus, Trichosporon and Lipomyces. The synthesis and storage of fat in yeast cells can be achieved via two pathways. In the first method – de novo, the acetyl-CoA and malonyl-CoA molecules are substrates of the lipid for the synthesis, while in the ex novo method, the hydrophobic compounds present in the environment are utilized. The process of lipid biosynthesis in yeast cells is affected by environmental factors such as carbon and nitrogen source in the medium, the C/N molar ratio, pH, temperature and the time of the cultivation. Microbial synthesis as the type of fat production process has many advantages, since it is insusceptible to weather conditions and the season of the year. Moreover, yeast show a rapid growth rate, which significantly shortens the production cycle. The main drawback of the industrial SCO production is low fat yield per unit of culture medium, which increases the total cost of the project. Microbiological fat synthesized by yeast might be used as a substitute for vegetable oils in human nutrition or as a substrate for the production of biodiesel.

1. Introduction. 2. Oleaginous microorganisms. 3. Enzymatic synthesis pathways of fat in yeast cells. 3.1. De novo lipid accumulation. 3.2. Ex novo lipid accumulation. 4. Factors affecting the biosynthesis of fat. 5. Attempts to genetically improve oleaginous yeast. 6. Extraction of fat from yeast cells. 7. Industrial applicability of microbial fat. 8. Conclusions

Compartmentalization in cephalosporin C biosynthesis by industrial strains Acremonium chrysogenum

Ultrastrukturalna organizacja komórek grzybni Acremonium chrysogenum podczas produkcji cefalosporyny C na skalę przemysłową
W. Kurzątkowski, A. Gębska-Kuczerowska

1. Introduction. 2. The pathway of cephalosporin C biosynthesis. 3. Secondary metabolism of cephalosporin C. 4. Cellular localization of enzymes involved in cephalosporin C biosynthesis (compartmentalization). 5. Role of peroxisomes in cephalosporin C biosynthesis. 6. Industrial strain improvement. 7. β-lactams in the treatment of various bacterial infections – mode of action. 8. Conclusions

Abstract: Cephalosporin C biosynthesis is a compartmentalized process located mainly in the sub-apical, productive, non-growing cells of the hyphae, which under the conditions of the industrial technology build well-dispersed flocculent mycelia. In this paper, the cephalosporin C production by industrial strains of Acremonium chrysogenum (syn. Cephalosporium acremonium) is described, including the central role of peroxisomes in the biosynthesis and secretion of this antibiotic and other β-lactams. The localization of the pathway of cephalosporin C biosynthesis and important transport steps of intermediates and the end-products are also discussed.

1. Wprowadzenie. 2 Szlak biosyntezy cefalosporyny C. 3. Wtórny metabolizm cefalosporyny C. 4. Lokalizacja enzymów biosyntezy cefalosporyny C w komórkach producenta. 5. Rola peroksysomów w biosyntezie cefalosporyny C. 6. Zwiększanie wydajności szczepów przemysłowych. 7. Rola antybiotykow β-laktamowych w lecznictwie – mechanizm działania antybiotyków β-laktamowych. 8. Wnioski

Streszczenie: W niniejszej pracy omówiono rolę peroksysomów w wytwarzaniu cefalosporyny C przez przemysłowe szczepy A. chrysogenum. Przedstawiono lokalizację enzymów szlaku biosyntezy cefalosporyny C w dojrzałych metabolicznie aktywnych nierosnących komórkach grzybni. Omówiono także niektóre aspekty zwiększania wydajności szczepów przemysłowych.

Modyfikacje struktur komórkowych mikroorganizmów wywoływane działaniem biocydów

Modifications of cell structure of microorganisms induced by biocides
E. Krzyżewska, M. Książczyk, A. Kędziora, B. Futoma-Kołoch, G. Bugla-Płoskońska

1. Wprowadzenie. 2. Oporność mikroorganizmów na biocydy. 3. Oporność bakterii na biocydy determinowana przez geny znajdujące się na plazmidzie. 4. Zmiana ultrastruktury składników osłon komórkowych, jako odpowiedź komórki bakterii na działanie biocydów. 4.1. Modyfikacje lipopolisacharydu bakterii Gram-ujemnych. 4.2. Modyfikacje białek błony zewnętrznej oraz pompy efflux jako główny system oporności na biocydy bakterii Gram-ujemnych. 5. Biofilm bakteryjny jako strategia ochronna przed działaniem substancji biobójczych. 6. Oporność krzyżowa bakterii na biocydy i antybiotyki. 7. Podsumowanie

Abstract: Interactions between bacterial cells and antimicrobial agents, including disinfectants, are still not well investigated and understood, especially in terms of bacterial insusceptibility to biocides. Facing increasing and deepening multidrug resistance phenomenon among pathogenic bacteria, disinfection is one of the most popular and effective non-antibiotic control and elimination method of pathogen dissemination. If disinfection is supposed to be an alternative solution to antibiotic therapy, it needs to be confirmed that multidrug resistance would not be resplaced by an even more dangerous phenomenon, i.e. microbial resistance to biocides. Hence, it is essential to investigate this issue. Recently, there have been a lot of research about interactions between microorganisms and biocides, which is reflected in the numerous publications available in the Pub-Med database (649 from years 2009–2014). What is more, since 2013/2014 the BacMet database,which contains sequences and information about genes associated with microbial susceptibility to biocides, is available on-line. Better understanding of bacterial molecular response to biocides might reveal some unknown and important interactions.

1. Introduction. 2. Resistance to biocides. 3. Biocide resistance determined by genes contained on plasmids. 4. Changes of bacterial cell envelope in response to biocides. 4.1. Modification of bacterial lipopolysaccharides. 4.2. Modifications of outer membrane proteins and efflux pumps as the main system of bacterial resistance to biocides of Gram-negative bacteria. 5. Bacterial biofilm as a protective strategy against biocides. 6. Cross-resistance of bacteria to biocides and antibiotics. 7. Summary

Najnowszy numer

Najnowszy numer

2018, 57, 3

O Towarzystwie


Celem Polskiego Towarzystwa
Mikrobiologów jest propagowanie rozwoju nauk mikrobiologicznych

i popularyzowanie osiągnięć
mikrobiologii wśród członków Towarzystwa oraz szerokich kręgów społeczeństwa. Formami działalności jest organizowanie zjazdów, posiedzeń naukowych, kursów, wykładów
i odczytów oraz konkursów prac naukowych; wydawanie i popieranie wydawania czasopism naukowych, książek
i innych publikacji
z dziedziny mikrobiologii; opiniowanie o stanie i potrzebach mikrobiologii polskiej

i występowanie w jej sprawach wobec
władz państwowych; współpraca
z pokrewnymi stowarzyszeniami
w kraju i za granicą.