All posts by Postępy Mikrobiologii

BIOCHEMICZNE METODY OCENY RÓŻNORODNOŚCI FUNKCJONALNEJ I STRUKTURALNEJ MIKROORGANIZMÓW GLEBOWYCH

Biochemical methods for the evaluation of the functional and structural diversity of microorganisms in the soil environment
Karolina Furtak, Anna M. Gajda

Streszczenie: Mikrobiom glebowy składa się z wysoce zróżnicowanych pod względem strukturalnym oraz funkcjonalnym grup mikroorganizmów. Stanowi on obiekt licznych badań od wielu lat, jednakże wciąż pozostaje nie do końca poznany. Wiadome jest, że mikroorganizmy glebowe odgrywają główną rolę w procesach biogeochemicznych. Znajomość ich różnorodności strukturalnej i funkcjonalnej pozwala zatem na ocenę stanu środowiska glebowego, co jest niezwykle istotne dla agronomii oraz ekologii. Działalność rolnicza oraz przemysłowa człowieka powoduje zmiany w aktywności gleby, które należy monitorować. W badaniach nad aktywnością i różnorodnością mikrobiologiczną gleby można wyróżnić wiele metod badawczych opracowywanych i udoskonalanych przez naukowców z całego świata. Metody biochemiczne stosowane w celu analizy aktywności mikrobiologicznej polegają na określeniu zdolności mikroorganizmów do syntezy, asymilacji bądź rozkładu określonych związków chemicznych, a także na analizie komponentów komórek drobnoustrojów. Omówiono w niniejszej pracy metody badawcze, które umożliwiają analizę zarówno funkcjonalności mikroorganizmów, jak i ich strukturalnego zróżnicowania.

1. Wprowadzenie. 2. Oznaczenia aktywności enzymatycznej. 3. Technika CLPP. 4. Analiza profili kwasów tłuszczowych. 5. Analiza profili białkowych. 6. Podsumowanie

Abstract: Soil microbiome is composed of groups of microorganisms which are structurally and functionally very different. For many years soil microbiome has been the subject of numerous studies, but still is not fully recognized. It is well known that soil microorganisms play a key role in biogeochemical processes. Knowledge of their structural and functional diversity makes it possible to assess the condition of the soil environment, which is extremely important for agronomy and ecology. The agricultural and industrial activities of humans cause changes in soil activity, which should be monitored. There are many different research methods developed to analyze soil activity and microbiological soil diversity and refined by researchers from around the world in. Biochemical methods used to analyze microbial activity are based on the determination of the ability of microorganisms to synthesize, assimilate or decompose specific chemical compounds, as well as on the analysis of microbial cell components. This study presents the research methods used for the analysis of both: the functionality of microorganisms and their structural diversity.

1. Introduction. 2. Determination of enzymatic activity. 3. CLPP technique. 4. Analysis of fatty acid profiles. 5. Analysis of protein profiles. 6. Summary

Human Microbiome Project – mikroflora jelit oraz jej wpływ na fizjologię i zdrowie człowieka

Human Microbiome Project – influence of gut microbiota on human physiology and health
J. Olszewska, E. K. Jagusztyn-Krynicka

1. Wstęp. 2. HMP – ogólna charakterystyka. 3. Mikroflora jelit. 3.1. Różnorodność taksonomiczna mikroflory jelit człowieka. 3.2. „Core microbiome” jelit. 3.3. Zmiany mikroflory jelit w zależności od wieku. 3.4. Wpływ diety i genotypu gospodarza na różnorodność mikroflory jelit. 3.5. Wybrane funkcje mikroflory jelit. 3.6. Mikroflora jelit człowieka a choroby. 3.6.1. Nowotwory. 3.6.2. Otyłość. 4. Podsumowanie

Abstract: The HMP (Human Microbiome Project) is one of several international projects which use metagenomic analysis to study human health. The HMP is a logical conceptual and experimental extension of Human Genome Project. The first part of the review presents general characteristic of the project, its goals and implementation phases. The gastrointestinal tract microbiota is extremely dense and diverse. Microbiota genes encode many biochemical pathways that humans have not evolved. Gut microbiota composition is ins are associated with many diseases. This review summarizes the latest research concerning the association of gut microbial ecology with the mechanisms by which microbes in the gut may mediate host physiology and metabolism in the context of obesity and cancer.

1. Introduction. 2. HMP – general characteristic. 3. Gut microbiota. 3.1. Microbial diversity of the human gut microbiota. 3.2. Gastrointestinal tract core microbiome. 3.3. Intestinal microbiota composition over human life. 3.4. Influence of diet and human genotype on gut microbiota 3.5. Selected activities of gut microbiota 3.6. Gut microbiota and diseases. 3.6.1. Cancer. 3.6.2. Obesity. 4. Summary

Rola mikroflory jelit w indukcji choroby Leśniewskiego-Crohna w świetle programu badań Human Microbiome Project

Role of microbiota in Crohn’s disease induction in the light of studies of Human Microbiome Project
A. Franczuk, E. K. Jagusztyn-Krynicka

1. Wstęp. 2. Podłoże genetyczne i immunologiczne CD. 2.1. Podłoże genetyczne choroby Leśniowskiego-Crohna. 2.2. Defensyny. 2.3. Nabłonkowa bariera jelitowa. 3. Rola mikroflory jelit w indukcji CD. 3.1. Zmiany dysbiotyczne. 3.2. Organizacja przestrzenna mikroorganizmów flory jelit. 4. Przyszłość metagenomiki w badaniu CD. 5. Podsumowanie

Abstract: Crohn’s disease (CD) is an inflammatory disorder which develops as a result of dysregulated interactions between gut microbiota and immune system. Because bacterial involvement in this illness is certain and classic methods of growing microorganisms are insufficient to clarify their impact on disease induction, metagenomics, as a culture-independent technique, provides revolutionary approach. This method become pivotal tool for a large project aiming at describing whole human microbiota – Human Microbiome Project (HPM). Studies on pathologically changed gut microbiota of CD patients involving metagenomic strategy provide profound analysis of intestinal microbial structure as well microbial localization. Ee review article also presents various aspects of the immune system functioning – such as genetic predispositions, dysregulated defensin secretion, poor epithelial barrier integrity, which contribute to improper immunological answer and promotion of inflammation.

1. Introduction. 2. Genetic and immunological basis. 2.1. Genetic basis of CD. 2.2. Defensins. 2.3. Gut epithelial barrier. 3. Role of microbiota in CD induction. 3.1. Dysbiotic changes. 3.2. Spatial organization of gut microorganisms. 4. Future of metagenomics in studies on CD. 5. Summary

Dwuskładnikowe systemy regulacyjne ziarenkowców Gram-dodatnich i ich rola w tworzeniu biofilmu

The role of two-component regulatory systems of Gram-positive cocci in biofilm formation
A. Nowak, S. Tyski

1. Wstęp. 2. Budowa, sposób działania i autoregulacja dwuskładnikowych systemów regulacyjnych (TCS). 3. TCS a biofilm. 3.1. Biofilm paciorkowców. 3.1.1. System VicRK S. mutans. 3.1.2. System ComDE S. mutans. 3.1.3. System HK11/RR11 (LiaSR) S. mutans. 3.1.4. System CiaRH S. mutans. 3.1.5. System CovRS (CsrRS) paciorkowców grup A, B, C. 3.1.6. System BfrAB S. gordonii. 3.2. Biofilm gronkowców. 3.2.1. System ArlRS S. aureus. 3.2.2. System GraRS S. aureus. 3.2.3. System WalKR S. aureus. 3.2.4. System LytSR S. aureus. 3.2.5. System SaeRS S. aureus oraz S. epidermidis. 3.3. Biofilm enterokoków. 3.3.1. System FsrABC E. faecalis. 3.3.2. System EtaSR E. faecalis. 4. Podsumowanie

Abstract: Two-component systems (TCS) are common in bacterial cells and play an important role in response to various signals coming from environment. The simplest TCS consists of two elements: a membrane sensor protein, which receives signals and the other – a regulatory protein that modulates target gene expression in response to the stimulus. The recent studies have shown that biofilm formation is dependent on many genetic factors, including the two-component regulatory systems. The bacterial cells living in biofilm communities are very vital and resistant to many antibiotics and antimicrobial agents. Therefore, in-depth knowledge of TCS involved in biofilm formation seems to be necessary to combat the growing resistance of bacteria.
1. Introduction. 2. Structure, organization and autoregulation of two-component regulatory systems. 3. TCS and the biofilm. 3.1. Streptococcal biofilm. 3.1.1. The VicRK system of S. mutans. 3.1.2. The ComDE system of S. mutans. 3.1.3. The HK11/RR11 (LiaSR) system of S. mutans. 3.1.4. The CiaRH system of S. mutans. 3.1.5. The CovRS (CsrRS) system of grup A, B, C streptococci. 3.1.6. The BfrAB system of S. gordonii. 3.2. Staphylococcal biofilm. 3.2.1. The ArlRS system of S. aureus. 3.2.2. The GraRS system of S. aureus. 3.2.3. The WalKR system of S. aureus. 3.2.4. The LytSR system of S. aureus. 3.2.5. The SaeRS system of S. aureus and S. epidermidis. 3. Enterococcal biofilm. 3.3.1. The FsrABC system of E. faecalis. 3.3.2. The EtaSR system of E. faecalis . 4. Summar

Najnowszy numer

Najnowszy numer

POSTĘPY MIKROBIOLOGII
2018, 57, 2

O Towarzystwie

PTM

Celem Polskiego Towarzystwa
Mikrobiologów jest propagowanie rozwoju nauk mikrobiologicznych

i popularyzowanie osiągnięć
mikrobiologii wśród członków Towarzystwa oraz szerokich kręgów społeczeństwa. Formami działalności jest organizowanie zjazdów, posiedzeń naukowych, kursów, wykładów
i odczytów oraz konkursów prac naukowych; wydawanie i popieranie wydawania czasopism naukowych, książek
i innych publikacji
z dziedziny mikrobiologii; opiniowanie o stanie i potrzebach mikrobiologii polskiej

i występowanie w jej sprawach wobec
władz państwowych; współpraca
z pokrewnymi stowarzyszeniami
w kraju i za granicą.