All posts by Postępy Mikrobiologii

Wewnątrzkomórkowe receptory NOD-podobne, skutki mutacji w obrębie ich genów

Intracellular NOD-like receptors, implications of mutations in their genes
M. Osiak, N. Pająk, H. Antosz

1. Wprowadzenie. 2. Rodzina receptorów NOD-podobnych. 2.1. Podrodzina NLRP. 2.2. Podrodzina NLRC. 2.3 Podrodzina NLRA. 2.4. Podrodzina NLRB. 2.5 Podrodzina NLRX. 3.Udział NLR w tworzeniu platform molekularnych-inflamasomów. 4. Choroby wywołane mutacjami w genach NLR. 4.1. Choroba Leśniowskiego-Crohna. 4.2. Choroba Blau’a. 4.3. Zespół okresowej gorączki. 4.4. Sarkoidoza. 4.5. Choroby alergiczne. 4.6. Zespół nagich limfocytów. 4.7. Niepowodzenia rozrodu. 4.8. Bielactwo. 5. Podsumowanie

Abstract: The response of the innate immune system depends inter alia on the activity of a family of NOD-like receptors (NLR). The NLR includes subfamilies of NLRP, NLRA, NLRB, NLRC, and NLRX. Active members of the NLRC subfamily ie NOD1 and NOD2 through recognizing ligands present in the cytosol activate the signaling pathway of the nuclear factor NF-κB. Other members of the NLR form large intracellular complexes called inflammasome and after binding the ligand they activate caspase 1, which splits pro-IL-1β, making it possible to release the active IL-1β outside the cell. It has been shown that mutations in certain NLR genes are associated with the development of numerous diseases including Crohn’s disease, Blau syndrome, cryopyrin-associated periodic fever syndrome, sarcoidosis, hydatidiform mole, testicular seminoma, allergic diseases, bare lymphocytic syndrome and vitiligo.

1. Introduction. 2. NOD-like receptors family. 2.2. NLRP subfamily. 2.3. NLRC subfamily. 2.4. NLRA subfamily. 2.5. NLRB subfamily. 2.5. NLRX subfamily. 3. NLR participation in the creation of molecular platforms – inflammasome. 4. Diseases caused by mutations in NLR genes. 4.1. Leśniowski-Crohn disease. 4.2. Blau syndrome. 4.3. Cryopyrin-associated periodic fever syndrome. 4.4. Sarcoidosis. 4.5. Allergic diseases. 4.6. Bare lymphocytic syndrome. 4.7. Reproductive failure. 4.8. Vitiligo. 5. Summary

Przemysłowe wykorzystanie bakterii z rodzaju Clostridium

Industrial application of Clostridium spp.
K. Leja, K. Czaczyk, K. Myszka

1. Wstęp. 2. Ogólna charakterystyka rodzaju Clostridium. 2.1. Morfologia, hodowla i metabolizm. 2.2. Chorobotwórczość. 3. Przemysłowe wykorzystanie Clostridium spp. 3.1. Biosynteza acetonu, butanolu i innych rozpuszczalników. 3.2. Synteza 1,3-propanodiolu. 3.3. Produkcja kwasów. 3.4. Produkcja wodoru. 3.5. Inne metabolity. 4.Wykorzystanie bakterii z rodzaju Clostridium w medycynie i kosmetyce. 5. Podsumowanie

Abstract: Bacteria of the genus Clostridium are often described only as being a biological threat and a foe of mankind. It is true that within the more than 150 validly described clostridial species of this heterogeneous genus, there are some that produce the most potent natural toxins known on earth. However, there is no much information about positive properties and possibility to use Clostridium strains in many industry branches, in medicine, and cosmetology. The modern biotechnology make possible to use the dangerous toxins as a valuable tools in the treatment of severe disease. It is one of the aims of this article to show that using definition “bad clostridia” is mistaken.

1. Introduction. 2. Characterization of Clostridium genera. 2.1. Morphology, cultivation and metabolism. 2.2. Pathogenicity. 3. Industrial application of Clostridium spp. 3.1. Acetone, butanol and other solvents biosynthesis. 3.2. 1,3-propanodiol biosynthesis. 3.3. Acids production. 3.4. Hydrogen production. 3.5. Other metabolites. 4. Application of Clostridium spp. in medicine and cosmetology. 5. Conclusions

Mikrobiologiczne przemiany kwasu wanilinowego

Microbial transformation of vanillic acid
M. Kurek, I. Greń

1. Wprowadzenie. 2. Mikrobiologiczny rozkład kwasu wanilinowego. 2.1. Demetylacja kwasu wanilinowego. 2.2. Dekarboksylacja kwasu wanilinowego. 2.3. Redukcja kwasu wanilinowego. 3. Synteza kwasu wanilinowego. 3.1. Synteza kwasu wanilinowego z kwasu ferulowego. 3.2. Synteza kwasu wanilinowego z eugenolu i izoeugenolu. 4. Podsumowanie

Abstract: Increasing demand for natural vanillic aroma in food industry as well as law restrictions for the usage of chemically synthesized compounds in natural fragrances caused large interest in vanillic production via biotechnological processes. Because vanillic acid is the main substrate for vanillic production, the knowledge of biological processes of its synthesis and the release from lignin is crucial for developing the optimal biotechnological processes. Some microorganisms are able to synthesize vanillic acid form naturally occurring compounds, such as ferulic acid, eugenol and isoeugenol using biotransformation reactions. Large amount of vanillin are produced by reduction of vanillic acid by carboxylic acid reductase (Car). Another pathways of vanillic acid transformation are based on its demethylation and decarboxylaction reactions. O-demethylases are NAH(P)H or tetrahydrofolic dependent enzymes. This review presents short characterization of vanillic acid transformation processes by microorganisms.

1. Introduction. 2. Microbial degradation of vanillic acid. 2.1. Demetylation of vanillic acid. 2.2. Decarboxylation of vanillic acid. 2.3. Reduction of vanillic acid. 3. Synthesis of vanillic acid. 3.1. Synthesis of vanillic acid from ferulic acid. 3.2. Synthesis of vanillic acid from eugenol and isoeugenol. 4. Summary

Beztlenowe ziarenkowce Gram-dodatnie (GPAC) – diagnostyka i znaczenie kliniczne

Gram-positive anaerobic cocci (GPAC) – diagnostic and clinical significance
M. Kierzkowska, A. Majewska, A. Sawicka-Grzelak, G. Młynarczyk

1. Wstęp. 2. Systematyka beztlenowych ziarenkowców Gram-dodatnich. 3. Znaczenie kliniczne GPAC. 4. Diagnostyka laboratoryjna. 4.1. Hodowla. 4.2. Identyfikacja fenotypowa. 4.3. Identyfikacja genotypowa. 5. Podsumowanie

Abstract: Among the Gram-positive anaerobic bacteria associated with clinical infections, the Gram-positive anaerobic cocci (GPAC) are the most predominant and account for approximately 25–30% of all isolated anaerobic bacteria from clinical specimens. They can be cultured from a wide variety of sites, particularly abscesses and infections of the mouth, skin and soft tissues, bone and joints and upper respiratory and female genital tracts. Most infections involving GPAC are polymicrobial. Still, routine culture and identification of these slowly growing anaerobes to the species level has been limited in the diagnostic laboratory, mainly due to the requirement of prolonged incubation times and time-consuming phenotypic identification. The development of molecular methods such as PCR, multiplex PCR, sequencing of the 16S rRNA gene have led to improved identification of GPAC. In recent years, MALDI-TOF MS has been implemented in routine laboratories and utilized as a completely new approach for the identification of bacteria. Data from molecular methods have led to extensive taxonomic changes during the last decades and also to the occurrence of new genera and species. This review describes clinical significance of GPAC and virulence factors one of the most pathogenic species – Finegoldia magna.

1. Introduction. 2. Taxonomy of Gram-positive anaerobic cocci. 3. Clinical significance of GPAC. 4. Laboratory diagnostic. 4.1. Culture. 4.2. Phenotypic identification. 4.3. Genotypic identification. 5. Summary

Ukierunkowana ewolucja enzymów pochodzenia mikrobiologicznego

Directed evolution of microbial enzymes
K. Hupert-Kocurek, A. Banaś, D. Wojcieszyńska, U. Guzik

1. Wprowadzenie. 2. Udoskonalanie enzymów metodami nierekombinacyjnymi. 3. Udoskonalanie enzymów metodami rekombinacyjnymi. 4. Podsumowanie

Abstract: Enzymes of microbial origin are extensively used in different industrial processes. However, very often these biocatalysts do not meet the requirements for a large-scale application and its properties have to be optimized. This includes not only the chemoselectivity, regioselectivity and stereoselectivity, but also long-term stability of the biocatalyst at certain temperatures or pH-values and activity in the presence of high substrate concentrations. Protein engineering has emerged as an important tool to overcome the limitations of natural enzymes as biocatalysts. There are two general strategies for protein engineering, rational design and directed evolution. In rational design detailed knowledge of the structure and function of the protein is used to make desired changes. Directed evolution involves either a random mutagenesis of the gene encoding the enzyme (e.g. by error-prone PCR) or recombination of gene fragments derived from DNase degradation, random priming recombination, random chimeragenesis on transient templates or recombined extension on truncated templates. In this review the essential methods for directed evolution of enzymes are described and various examples for the application of these protein engineering tools are provided.

1. Introduction. 2. Improvement of enzymes using non-recombinant methods. 3. Improvement of enzymes using gene-recombination methods. 4. Summary

Najnowszy numer

Najnowszy numer

POSTĘPY MIKROBIOLOGII
2017, 56, 3

O Towarzystwie

PTM

Celem Polskiego Towarzystwa
Mikrobiologów jest propagowanie rozwoju nauk mikrobiologicznych

i popularyzowanie osiągnięć
mikrobiologii wśród członków Towarzystwa oraz szerokich kręgów społeczeństwa. Formami działalności jest organizowanie zjazdów, posiedzeń naukowych, kursów, wykładów
i odczytów oraz konkursów prac naukowych; wydawanie i popieranie wydawania czasopism naukowych, książek
i innych publikacji
z dziedziny mikrobiologii; opiniowanie o stanie i potrzebach mikrobiologii polskiej

i występowanie w jej sprawach wobec
władz państwowych; współpraca
z pokrewnymi stowarzyszeniami
w kraju i za granicą.